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What is Bloom Filter? A Compact Data Structure 
Storing Set-membership

• Bloom Filters answer “is item x in set Y ” 
by:

• “definitely no”, or

• “probably yes” with probability ε to be 
wrong

• Benefit: not always precise but highly 
compact

• Typically a few bits per item

• Achieving lower ε (more accurate) requires 
spending more bits per item2

false positive rate



Example Use: Safe Browsing
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www.binfan.com

Lookup(“www.binfan.com”)
No!

Known Malicious URLs 
Stored in Bloom Filter

Scale to 
millions URLs

Remote
Server

Please verify
“www.binfan.com”

It is Good!

Probably Yes!



Bloom Filter Basics

A Bloom Filter consists of m bits and k hash 
functions 

Example: m = 10, k = 3
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0 0 0 0 0 0 0 0 0 0

Insert(x)

hash1(x)
hash2(x)

hash3(x)

1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0

Lookup(y)

hash1(y)
hash2(y)

hash3(y)

= not found



High 
Performance

Low Space 
Cost

Delete 
Support

Bloom Filter

Counting 
Bloom Filter

Quotient 
Filter
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Succinct Data Structures for 
Approximate Set-membership Tests 

Can we achieve all three in 
practice?

✔ ✗✔

✔✔

✔✔

✗

✗



Outline

• Background

• Cuckoo filter algorithm

• Performance evaluation

• Summary
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Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer 
fingerprint

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:



Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer 
fingerprint

• Insert(x): 

• add Fingerprint(x) to hash table

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)



Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer 
fingerprint

• Insert(x): 

• add Fingerprint(x) to hash table

• Lookup(x): 

• search Fingerprint(x) in hashtable FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)

Lookup(x) = found



Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer 
fingerprint

• Insert(x): 

• add Fingerprint(x) to hash table

• Lookup(x): 

• search Fingerprint(x) in hashtable

• Delete(x): 

• remove Fingerprint(x) from hashtable

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)

Delete(x)

How to Construct Hashtable?
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• Perfect hashing: maps all items with no 
collisions

FP(e)

FP(c)

FP(d)

FP(b)

FP(f)

FP(a)

{a, b, c, d, e, f}
f(x)

(Minimal) Perfect Hashing: 
No Collision but Update is Expensive



• Perfect hashing: maps all items with no 
collisions

• Changing set must recalculate f 
high cost/bad performance of update
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{a, b, c, d, e, f}
f(x)

(Minimum) Perfect Hashing: 
No Collision but Update is Expensive

{a, b, c, d, e, g}
f(x) = ?

FP(e)

FP(c)

FP(d)

FP(b)

FP(f)

FP(a)



Convention Hash Table: High Space Cost

• Chaining :

• Pointers 
low space utilization

• Linear Probing

• Making lookups O(1) 
requires large % table 
empty 
low space utilization

• Compare multiple 
fingerprints sequentially 

more false positives
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bkt1

bkt2

bkt3 FP(a)

bkt0

FP(c)

FP(d)

FP(a)
Lookup(x)

Lookup(x)

FP(c)

FP(f)



Cuckoo Hashing[Pagh2004] Good But ..

• High Space Utilization

• 4-way set-associative table: >95% entries 
occupied

• Fast Lookup: O(1)
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0:

1:

2:

3:

5:

6:

7:

4:
hash2(x)

Standard cuckoo hashing doesn’t work with 
fingerprints[Pagh2004] Cuckoo hashing.

lookup(x)

hash1(x)
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Standard Cuckoo Requires Storing Each Item 

b

0:

1:

2:

3:

c

a

5:

6:

7:

4:
Insert(x)

h1(x)

h2(x)
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Standard Cuckoo Requires Storing Each Item 

b

0:

1:

2:

3:

c

x

5:

6:

7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4

h2(x)
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Standard Cuckoo Requires Storing Each Item 

b

0:

1:

2:

3:

a

x

5:

6:

7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)



18

Standard Cuckoo Requires Storing Each Item 

c

b

0:

1:

2:

3:

a

x

5:

6:

7:

4:
Insert(x)

Insert complete
(or fail if MaxSteps reached)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)



Challenge: How to Perform Cuckoo?

• Cuckoo hashing requires rehashing and 
displacing existing items
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With only fingerprint, 
how to calculate item’s alternate 

bucket?

FP(b)

0:

1:

2:

3:

FP(c)

FP(a)

5:

6:

7:

4:

Kick FP(a) to which bucket?

Kick FP(c) to which bucket?



We Apply Partial-Key Cuckoo

• Standard Cuckoo Hashing: two independent 
hash functions for two buckets

• Partial-key Cuckoo Hashing: use one bucket 
and fingerprint to derive the other [Fan2013]

To displace existing fingerprint:
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bucket1 = hash(x) 

bucket2 = bucket1     hash(FP(x))

bucket1 = hash1(x) 

bucket2 = hash2(x)

alternate(x) = current(x)   hash(FP(x))

[Fan2013] MemC3: Compact and Concurrent MemCache
with Dumber Caching and Smarter Hashing



Partial Key Cuckoo Hashing

• Perform cuckoo hashing on fingerprints
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FP(b)

0:

1:

2:

3:

FP(c)

FP(a)

5:

6:

7:

4:

Kick FP(a) to “6      hash(FP(a))”

Kick FP(c) to “4      hash(FP(c))”

Can we still achieve high space 
utilization with partial-key cuckoo 

hashing?



Fingerprints Must Be “Long” for Space 
Efficiency

• Fingerprint must be Ω(logn/b) bits in theory

• n: hash table size, b: bucket size

• see more analysis in paper
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When fingerprint > 5 
bits, high table space 

utilization

T
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e
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n

Table size: n=128 million entries



Space Efficiency 
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ε: target false positive rate
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Space Efficiency 
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ε: target false positive rate
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Space Efficiency 
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ε: target false positive rate
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Space Efficiency 
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ε: target false positive rate

bi
ts
 p
er
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te
m 
to
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Cuckoo filter 
+ semisorting

more compact 
than Bloom 
filter at 3%

Cuckoo 
filter

Bloom filter

Lower bound

More Space

More False Positive



Outline

• Background

• Cuckoo filter algorithm

• Performance evaluation

• Summary
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Evaluation

• Compare cuckoo filter with

• Bloom filter (cannot delete)

• Blocked Bloom filter [Putze2007] (cannot delete) 

• d-left counting Bloom filter [Bonomi2006]

• Cuckoo filter + semisorting

• More in the paper

• C++ implementation, single threaded

29

[Putze2007] Cache-, hash- and space- efficient bloom filters.

[Bonomi2006] Beyond Bloom filters: From approximate membership 
checks to approximate state machines.



Lookup Performance (MOPS) 
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Lookup Performance (MOPS) 
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Lookup Performance (MOPS) 
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Lookup Performance (MOPS) 
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Cuckoo filter is among the fastest regardless 
workloads.
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Insert Performance (MOPS)
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Cuckoo filter has decreasing insert rate, but 
overall is only slower than blocked Bloom 

filter.

Cuckoo

Blocked Bloom

d-left 
Bloom

Cuckoo +
semisorting

Standard Bloom



Summary

• Cuckoo filter, a Bloom filter 
replacement:

• Deletion support

• High performance

• Less Space than Bloom filters in practice 

• Easy to implement

• Source code available in C++:

• https://github.com/efficient/cuckoofilter
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Othello Hashing and Its Applications for 
Network Processing

Chen Qian

Department of Computer Engineering
qian@ucsc.edu

https://users.soe.ucsc.edu/~qian/

• Publications in ICNP’17, 
SIGMETRICS’17, MECOMM’17 and 
Bioinformatics

mailto:qian@ucsc.edu
https://users.soe.ucsc.edu/%7Eqian/
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Background
PhD in 2013 from UT Austin 
 with Simon Lam

Research:
 Computer networking
 SDN/NFV
 Internet of things
 Security



Motivation
Network algorithms always prefer small 
memory and fast processing speed. 
 Fast memory is precious resource on network 

devices
 Needs to reach the line rate to avoid being a 

bottleneck, under large traffic volume

More important in networks with layer-two 
semantics

38



Othello Hashing
Essentially a key-value lookup structure
Keys can be any names, addresses, identifiers, 
etc.
Values should not be too long. At most 64 bit. 

For example
 Key: network address; Value: link to forward a packet
 Key: virtual IP; Value: direct IP

39



Why Othello is special
Minimal query time: only two memory read 
operations (cachelines) per query. 
Minimal memory cost: 10%-30% of existing 
hash tables (e.g., Cuckoo). 

Support dynamic updates: can be updated 
over a million times per second. 
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Idea of dynamic Othello lookups

41

K-V
Lookup

Optimize memory and query cost

Controller
Program

Lookup 

Construct
Update

Update via existing API of 
programmable networks



How Othello works
Basic version: Classifies keys to two sets 𝑋𝑋
and 𝑌𝑌
 Equivalent to key lookups for a 1-bit value

Query result
 𝜏𝜏 𝑘𝑘 = 0 𝑘𝑘 ∈ 𝑋𝑋
 𝜏𝜏 𝑘𝑘 = 1 𝑘𝑘 ∈ 𝑌𝑌

Advance version: Classifies keys to 2𝑙𝑙 sets
 Equivalent to key lookups for a 𝑙𝑙-bit value

42



Othello Query Structure
Two bitmaps 𝑎𝑎, 𝑏𝑏 with size 𝑚𝑚 (𝑚𝑚 in (1.33𝑛𝑛, 2𝑛𝑛))
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1 0 0𝑎𝑎

0 1 1 1𝑏𝑏

ℎ𝑎𝑎 █

ℎ𝑏𝑏 █
𝜏𝜏 █ = 0 ⊕ 1 = 1

𝑚𝑚 bits
█ is in set Y

Query is easy. Then how to 
construct it?

𝑛𝑛 is # of keys



Othello Control Structure: Construct
𝐺𝐺: acyclic bipartite graph
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𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

ℎ𝑎𝑎

ℎ𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘)
█ 6 5



Othello Construct
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𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

ℎ𝑎𝑎

ℎ𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘)
█ 6 5
█ 1 0
█ 1 2
█ 1 3
█ 4 2

If finding a cycle, use another pair 
<ha, hb> until an acyclic graph is built

For n names, the time to find G is 
O(n). 



Compute Bitmap

46

𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘) set
█ 6 5 Y
█ 1 0
█ 1 2
█ 1 3
█ 4 2

1

0



Compute Bitmap
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𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘) set
█ 6 5 Y
█ 1 0 X
█ 1 2 Y
█ 1 3 X
█ 4 2 X

1

0

1

1 0 1

0

If G is acyclic, easy to find a coloring plan 



Name Addition – color flip
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𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘) set
█ 6 5 Y
█ 1 0 X
█ 1 2 Y
█ 1 3 X
█ 4 2 X
█ 6 3 Y

101

1 0 1

0
ℎ𝑎𝑎

ℎ𝑏𝑏
01

If G is acyclic, flipping is trivial



L-Othello functionality 
Classifies names into  2𝑙𝑙 sets: 
𝑍𝑍0,𝑍𝑍1,⋯ ,𝑍𝑍2𝑙𝑙−1
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█ █

█

█

█

█
█

█

█
█

█
██

█
█

𝑍𝑍0

𝑍𝑍1

𝑍𝑍3

𝑍𝑍2

𝑋𝑋1

𝑌𝑌1 𝑋𝑋2 𝑌𝑌2

l Othellos can classify names to 2l sets

l < 8 for network devices



Example
Classify keys in 8 sets: 𝑍𝑍0,𝑍𝑍1,⋯ ,𝑍𝑍7
Orthogonal separation of sets
 𝑋𝑋3 = 𝑍𝑍0 ∪ 𝑍𝑍1 ∪ 𝑍𝑍2 ∪ 𝑍𝑍3 ; 𝑌𝑌3 = 𝑍𝑍4 ∪ 𝑍𝑍5 ∪ 𝑍𝑍6 ∪ 𝑍𝑍7 .
 𝑋𝑋2 = 𝑍𝑍0 ∪ 𝑍𝑍1 ∪ 𝑍𝑍4 ∪ 𝑍𝑍5 ; 𝑌𝑌2 = 𝑍𝑍2 ∪ 𝑍𝑍3 ∪ 𝑍𝑍6 ∪ 𝑍𝑍7 .
 𝑋𝑋1 = 𝑍𝑍0 ∪ 𝑍𝑍2 ∪ 𝑍𝑍4 ∪ 𝑍𝑍6 ; 𝑌𝑌1 = 𝑍𝑍1 ∪ 𝑍𝑍3 ∪ 𝑍𝑍5 ∪ 𝑍𝑍7 .

6=(110)2   𝑘𝑘 ∈ 𝑌𝑌3 ∩ 𝑌𝑌2 ∩ 𝑋𝑋1 ⇒ 𝑘𝑘 ∈ 𝑍𝑍6
𝑙𝑙 Othellos : classify keys in 2𝑙𝑙 sets.

50
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0 1 0𝑎𝑎1
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 1 0 1 0𝑏𝑏1

𝑎𝑎2
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 0 1 0 1𝑏𝑏2

1 0 1

Othello 1 Othello 2

Same G, ha, hb. 
Different coloring plan and bitmaps  

Do we need 2l memory reads to 
query l Othellos?

Same X UY
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0 1 0𝑎𝑎1
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 1 0 1 0𝑏𝑏1

ℎ𝑏𝑏

𝑎𝑎2
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 0 1 0 1𝑏𝑏2

1 0 1

Othello 1 Othello 2

𝐴𝐴

𝐵𝐵

ℎ𝑎𝑎

𝜏𝜏 𝑘𝑘 = 01 ⊕ 10 = 11 2
k is in set Z3

CPUs can read l bits at one time  

𝐴𝐴[0]𝐴𝐴[1]



Alien keys
What is 𝜏𝜏 𝑘𝑘 = 𝑎𝑎 ℎ𝑎𝑎 𝑘𝑘 ⊕ 𝑏𝑏[ℎ𝑏𝑏 𝑘𝑘 ] when 𝑘𝑘 is 
not in 𝑆𝑆?
 An arbitrary value

𝜏𝜏 𝑘𝑘 return 1 with when
 𝑎𝑎 𝑖𝑖 = 1 && 𝑏𝑏 𝑗𝑗 = 0, or
 𝑎𝑎 𝑖𝑖 = 0&& 𝑏𝑏 𝑗𝑗 = 1
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Applications of Othello
1. Forwarding Information Base (FIB)
2. Software load balancer
3. Data placement and lookup
4. Private queries
5. Genomic sequencing search
And more… 
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A Concise FIB
Resolving FIB explosion is crucial
 For layer-two interconnected data centers 
 For OpenFlow-like fine-grained flow control

Concise using l-Othello is a portable 
solution
 In hardware devices
 Or software switches

55

A Fast, Small, and Dynamic Forwarding Information Base, In ACM SIGMETRICS 2017 
A Concise Forwarding Information Base for Scalable and Fast Name Switching, in 

IEEE ICNP 2017.



Network-wide updating
If all devices share a same set of network 
names/addresses
 Such as in layer-two Ethernet-based data 

centers
 All Othellos will share a same G. 
 Hence network-wide updating is very efficient!

Update consistency also provided
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Implementation of three prototypes
1. Memory mode
 Query and control structures running on 

different threads.

2. CLICK modular router
3. Intel Data Plane Development Kit (DPDK)
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Comparison:
Buffalo

Cuckoo hashing

58

Yu, Fabrikant, Rexford, in CoNEXT’09

Zhou, Fan, Lim, Kaminsky, Andersen, 
in CoNEXT’13 and SIGCOMM’15



Comparison: Memory size
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FIB Example Memory Size
Name Type # Names # Actions Concise Cuckoo Buffalo

MAC (48 bits) 7*105 16 1M 5.62M 2.64M
MAC (48 bits) 5*106 256 16M 40.15M 27.70M
MAC (48 bits) 3*107 256 128M 321.23M 166.23M
IPv4 (32 bits) 1*106 16 2M 4.27M 3.77M

IPv6 (128 bits) 2*106 256 8M 34.13M 11.08M
OpenFlow (356 bits) 3*105 256 1M 14.46M 1.67M
OpenFlow (356 bits) 1.4*106 65536 8M 67.46M 18.21M
File name (varied) 359194 16 512K 19.32M 1.35M



Query speed
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2x to 4x speed advantage



Update speed
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For unknown network names
1. For data centers with most internal traffic
 Such situation is rare

2. For networks with much incoming traffic
 A filter can be installed at a firewall

3. Concise may include an r-bit checksum. 
 A lookup still requires 2 memory accesses in 

total, as long as l + r <= 64. 
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Thank You 

Chen Qian
cqian12@ucsc.edu

https://users.soe.ucsc.edu/~qian/

mailto:cqian12@ucsc.edu
https://users.soe.ucsc.edu/%7Eqian/
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