
Cuckoo Filter:
Practically Better Than Bloom

Bin Fan (CMU/Google)
David Andersen (CMU)

Michael Kaminsky (Intel Labs)
Michael Mitzenmacher (Harvard)

1

What is Bloom Filter? A Compact Data Structure
Storing Set-membership

• Bloom Filters answer “is item x in set Y ”
by:

• “definitely no”, or

• “probably yes” with probability ε to be
wrong

• Benefit: not always precise but highly
compact

• Typically a few bits per item

• Achieving lower ε (more accurate) requires
spending more bits per item2

false positive rate

Example Use: Safe Browsing

3

www.binfan.com

Lookup(“www.binfan.com”)
No!

Known Malicious URLs
Stored in Bloom Filter

Scale to
millions URLs

Remote
Server

Please verify
“www.binfan.com”

It is Good!

Probably Yes!

Bloom Filter Basics

A Bloom Filter consists of m bits and k hash
functions

Example: m = 10, k = 3

4

0 0 0 0 0 0 0 0 0 0

Insert(x)

hash1(x)
hash2(x)

hash3(x)

1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0

Lookup(y)

hash1(y)
hash2(y)

hash3(y)

= not found

High
Performance

Low Space
Cost

Delete
Support

Bloom Filter

Counting
Bloom Filter

Quotient
Filter

5

Succinct Data Structures for
Approximate Set-membership Tests

Can we achieve all three in
practice?

✔ ✗✔

✔✔

✔✔

✗

✗

Outline

• Background

• Cuckoo filter algorithm

• Performance evaluation

• Summary

6

Basic Idea: Store Fingerprints in Hash Table

7

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer
fingerprint

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

Basic Idea: Store Fingerprints in Hash Table

8

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer
fingerprint

• Insert(x):

• add Fingerprint(x) to hash table

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)

Basic Idea: Store Fingerprints in Hash Table

9

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer
fingerprint

• Insert(x):

• add Fingerprint(x) to hash table

• Lookup(x):

• search Fingerprint(x) in hashtable FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)

Lookup(x) = found

Basic Idea: Store Fingerprints in Hash Table

10

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer
fingerprint

• Insert(x):

• add Fingerprint(x) to hash table

• Lookup(x):

• search Fingerprint(x) in hashtable

• Delete(x):

• remove Fingerprint(x) from hashtable

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)

Delete(x)

How to Construct Hashtable?

11

• Perfect hashing: maps all items with no
collisions

FP(e)

FP(c)

FP(d)

FP(b)

FP(f)

FP(a)

{a, b, c, d, e, f}
f(x)

(Minimal) Perfect Hashing:
No Collision but Update is Expensive

• Perfect hashing: maps all items with no
collisions

• Changing set must recalculate f 
high cost/bad performance of update

12

{a, b, c, d, e, f}
f(x)

(Minimum) Perfect Hashing:
No Collision but Update is Expensive

{a, b, c, d, e, g}
f(x) = ?

FP(e)

FP(c)

FP(d)

FP(b)

FP(f)

FP(a)

Convention Hash Table: High Space Cost

• Chaining :

• Pointers 
low space utilization

• Linear Probing

• Making lookups O(1)
requires large % table
empty 
low space utilization

• Compare multiple
fingerprints sequentially

more false positives

13

bkt1

bkt2

bkt3 FP(a)

bkt0

FP(c)

FP(d)

FP(a)
Lookup(x)

Lookup(x)

FP(c)

FP(f)

Cuckoo Hashing[Pagh2004] Good But ..

• High Space Utilization

• 4-way set-associative table: >95% entries
occupied

• Fast Lookup: O(1)

14

0:

1:

2:

3:

5:

6:

7:

4:
hash2(x)

Standard cuckoo hashing doesn’t work with
fingerprints[Pagh2004] Cuckoo hashing.

lookup(x)

hash1(x)

15

Standard Cuckoo Requires Storing Each Item

b

0:

1:

2:

3:

c

a

5:

6:

7:

4:
Insert(x)

h1(x)

h2(x)

16

Standard Cuckoo Requires Storing Each Item

b

0:

1:

2:

3:

c

x

5:

6:

7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4

h2(x)

17

Standard Cuckoo Requires Storing Each Item

b

0:

1:

2:

3:

a

x

5:

6:

7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)

18

Standard Cuckoo Requires Storing Each Item

c

b

0:

1:

2:

3:

a

x

5:

6:

7:

4:
Insert(x)

Insert complete
(or fail if MaxSteps reached)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)

Challenge: How to Perform Cuckoo?

• Cuckoo hashing requires rehashing and
displacing existing items

19

With only fingerprint,
how to calculate item’s alternate

bucket?

FP(b)

0:

1:

2:

3:

FP(c)

FP(a)

5:

6:

7:

4:

Kick FP(a) to which bucket?

Kick FP(c) to which bucket?

We Apply Partial-Key Cuckoo

• Standard Cuckoo Hashing: two independent
hash functions for two buckets

• Partial-key Cuckoo Hashing: use one bucket
and fingerprint to derive the other [Fan2013]

To displace existing fingerprint:

20

bucket1 = hash(x)

bucket2 = bucket1 hash(FP(x))

bucket1 = hash1(x)

bucket2 = hash2(x)

alternate(x) = current(x) hash(FP(x))

[Fan2013] MemC3: Compact and Concurrent MemCache
with Dumber Caching and Smarter Hashing

Partial Key Cuckoo Hashing

• Perform cuckoo hashing on fingerprints

21

FP(b)

0:

1:

2:

3:

FP(c)

FP(a)

5:

6:

7:

4:

Kick FP(a) to “6 hash(FP(a))”

Kick FP(c) to “4 hash(FP(c))”

Can we still achieve high space
utilization with partial-key cuckoo

hashing?

Fingerprints Must Be “Long” for Space
Efficiency

• Fingerprint must be Ω(logn/b) bits in theory

• n: hash table size, b: bucket size

• see more analysis in paper
22

When fingerprint > 5
bits, high table space

utilization

T
a
b
l
e
S
p
a
c
e
U
t
i
l
i
za
t
io
n

Table size: n=128 million entries

Space Efficiency

24

ε: target false positive rate

bi
ts
 p
er
 i
te
m
to
 a
ch
ie
ve
 ε

Lower bound

More Space

More False Positive

Space Efficiency

25

ε: target false positive rate

bi
ts
 p
er
 i
te
m
to
 a
ch
ie
ve
 ε

Bloom filter

Lower bound

More Space

More False Positive

Space Efficiency

26

ε: target false positive rate

bi
ts
 p
er
 i
te
m
to
 a
ch
ie
ve
 ε

Cuckoo
filter

Bloom filter

Lower bound

More Space

More False Positive

Space Efficiency

27

ε: target false positive rate

bi
ts
 p
er
 i
te
m
to
 a
ch
ie
ve
 ε

Cuckoo filter
+ semisorting

more compact
than Bloom
filter at 3%

Cuckoo
filter

Bloom filter

Lower bound

More Space

More False Positive

Outline

• Background

• Cuckoo filter algorithm

• Performance evaluation

• Summary

28

Evaluation

• Compare cuckoo filter with

• Bloom filter (cannot delete)

• Blocked Bloom filter [Putze2007] (cannot delete)

• d-left counting Bloom filter [Bonomi2006]

• Cuckoo filter + semisorting

• More in the paper

• C++ implementation, single threaded

29

[Putze2007] Cache-, hash- and space- efficient bloom filters.

[Bonomi2006] Beyond Bloom filters: From approximate membership
checks to approximate state machines.

Lookup Performance (MOPS)

30

11.93

6.28

7.96
9.26

4.86

11.92

6.45

8.51

12.04

8.28

0

2

4

6

8

10

12

14

cf cfss dlbf bbf bf

Hit Miss

Cuckoo Cuckoo +
semisort

d-left counting
Bloom

blocked
Bloom

(no deletion)

Bloom
(no deletion)

Lookup Performance (MOPS)

31

11.93

6.28

7.96
9.26

4.86

11.92

6.45

8.51

12.04

8.28

0

2

4

6

8

10

12

14

cf cfss dlbf bbf bf

Hit Miss

Cuckoo Cuckoo +
semisort

blocked
Bloom

(no deletion)

Bloom
(no deletion)

d-left counting
Bloom

Lookup Performance (MOPS)

32

11.93

6.28

7.96
9.26

4.86

11.92

6.45

8.51

12.04

8.28

0

2

4

6

8

10

12

14

cf cfss dlbf bbf bf

Hit Miss

Cuckoo Cuckoo +
semisort

blocked
Bloom

(no deletion)

Bloom
(no deletion)

d-left counting
Bloom

Lookup Performance (MOPS)

33

Cuckoo filter is among the fastest regardless
workloads.

11.93

6.28

7.96
9.26

4.86

11.92

6.45

8.51

12.04

8.28

0

2

4

6

8

10

12

14

cf cfss dlbf bbf bf

Hit Miss

Cuckoo Cuckoo +
semisort

blocked
Bloom

(no deletion)

Bloom
(no deletion)

d-left counting
Bloom

Insert Performance (MOPS)

34

Cuckoo filter has decreasing insert rate, but
overall is only slower than blocked Bloom

filter.

Cuckoo

Blocked Bloom

d-left
Bloom

Cuckoo +
semisorting

Standard Bloom

Summary

• Cuckoo filter, a Bloom filter
replacement:

• Deletion support

• High performance

• Less Space than Bloom filters in practice

• Easy to implement

• Source code available in C++:

• https://github.com/efficient/cuckoofilter

35

Othello Hashing and Its Applications for
Network Processing

Chen Qian

Department of Computer Engineering
qian@ucsc.edu

https://users.soe.ucsc.edu/~qian/

• Publications in ICNP’17,
SIGMETRICS’17, MECOMM’17 and
Bioinformatics

mailto:qian@ucsc.edu
https://users.soe.ucsc.edu/%7Eqian/

37

Background
PhD in 2013 from UT Austin
 with Simon Lam

Research:
 Computer networking
 SDN/NFV
 Internet of things
 Security

Motivation
Network algorithms always prefer small
memory and fast processing speed.
 Fast memory is precious resource on network

devices
 Needs to reach the line rate to avoid being a

bottleneck, under large traffic volume

More important in networks with layer-two
semantics

38

Othello Hashing
Essentially a key-value lookup structure
Keys can be any names, addresses, identifiers,
etc.
Values should not be too long. At most 64 bit.

For example
 Key: network address; Value: link to forward a packet
 Key: virtual IP; Value: direct IP

39

Why Othello is special
Minimal query time: only two memory read
operations (cachelines) per query.
Minimal memory cost: 10%-30% of existing
hash tables (e.g., Cuckoo).

Support dynamic updates: can be updated
over a million times per second.

40

Idea of dynamic Othello lookups

41

K-V
Lookup

Optimize memory and query cost

Controller
Program

Lookup

Construct
Update

Update via existing API of
programmable networks

How Othello works
Basic version: Classifies keys to two sets 𝑋𝑋
and 𝑌𝑌
 Equivalent to key lookups for a 1-bit value

Query result
 𝜏𝜏 𝑘𝑘 = 0 𝑘𝑘 ∈ 𝑋𝑋
 𝜏𝜏 𝑘𝑘 = 1 𝑘𝑘 ∈ 𝑌𝑌

Advance version: Classifies keys to 2𝑙𝑙 sets
 Equivalent to key lookups for a 𝑙𝑙-bit value

42

Othello Query Structure
Two bitmaps 𝑎𝑎, 𝑏𝑏 with size 𝑚𝑚 (𝑚𝑚 in (1.33𝑛𝑛, 2𝑛𝑛))

43

1 0 0𝑎𝑎

0 1 1 1𝑏𝑏

ℎ𝑎𝑎 █

ℎ𝑏𝑏 █
𝜏𝜏 █ = 0 ⊕ 1 = 1

𝑚𝑚 bits
█ is in set Y

Query is easy. Then how to
construct it?

𝑛𝑛 is # of keys

Othello Control Structure: Construct
𝐺𝐺: acyclic bipartite graph

44

𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

ℎ𝑎𝑎

ℎ𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘)
█ 6 5

Othello Construct

45

𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

ℎ𝑎𝑎

ℎ𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘)
█ 6 5
█ 1 0
█ 1 2
█ 1 3
█ 4 2

If finding a cycle, use another pair
<ha, hb> until an acyclic graph is built

For n names, the time to find G is
O(n).

Compute Bitmap

46

𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘) set
█ 6 5 Y
█ 1 0
█ 1 2
█ 1 3
█ 4 2

1

0

Compute Bitmap

47

𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘) set
█ 6 5 Y
█ 1 0 X
█ 1 2 Y
█ 1 3 X
█ 4 2 X

1

0

1

1 0 1

0

If G is acyclic, easy to find a coloring plan

Name Addition – color flip

48

𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒

𝑎𝑎

𝑏𝑏

𝑘𝑘 ℎ𝑎𝑎(𝑘𝑘) ℎ𝑏𝑏(𝑘𝑘) set
█ 6 5 Y
█ 1 0 X
█ 1 2 Y
█ 1 3 X
█ 4 2 X
█ 6 3 Y

101

1 0 1

0
ℎ𝑎𝑎

ℎ𝑏𝑏
01

If G is acyclic, flipping is trivial

L-Othello functionality
Classifies names into 2𝑙𝑙 sets:
𝑍𝑍0,𝑍𝑍1,⋯ ,𝑍𝑍2𝑙𝑙−1

49

█ █

█

█

█

█
█

█

█
█

█
██

█
█

𝑍𝑍0

𝑍𝑍1

𝑍𝑍3

𝑍𝑍2

𝑋𝑋1

𝑌𝑌1 𝑋𝑋2 𝑌𝑌2

l Othellos can classify names to 2l sets

l < 8 for network devices

Example
Classify keys in 8 sets: 𝑍𝑍0,𝑍𝑍1,⋯ ,𝑍𝑍7
Orthogonal separation of sets
 𝑋𝑋3 = 𝑍𝑍0 ∪ 𝑍𝑍1 ∪ 𝑍𝑍2 ∪ 𝑍𝑍3 ; 𝑌𝑌3 = 𝑍𝑍4 ∪ 𝑍𝑍5 ∪ 𝑍𝑍6 ∪ 𝑍𝑍7 .
 𝑋𝑋2 = 𝑍𝑍0 ∪ 𝑍𝑍1 ∪ 𝑍𝑍4 ∪ 𝑍𝑍5 ; 𝑌𝑌2 = 𝑍𝑍2 ∪ 𝑍𝑍3 ∪ 𝑍𝑍6 ∪ 𝑍𝑍7 .
 𝑋𝑋1 = 𝑍𝑍0 ∪ 𝑍𝑍2 ∪ 𝑍𝑍4 ∪ 𝑍𝑍6 ; 𝑌𝑌1 = 𝑍𝑍1 ∪ 𝑍𝑍3 ∪ 𝑍𝑍5 ∪ 𝑍𝑍7 .

6=(110)2 𝑘𝑘 ∈ 𝑌𝑌3 ∩ 𝑌𝑌2 ∩ 𝑋𝑋1 ⇒ 𝑘𝑘 ∈ 𝑍𝑍6
𝑙𝑙 Othellos : classify keys in 2𝑙𝑙 sets.

50

51

0 1 0𝑎𝑎1
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 1 0 1 0𝑏𝑏1

𝑎𝑎2
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 0 1 0 1𝑏𝑏2

1 0 1

Othello 1 Othello 2

Same G, ha, hb.
Different coloring plan and bitmaps

Do we need 2l memory reads to
query l Othellos?

Same X UY

52

0 1 0𝑎𝑎1
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 1 0 1 0𝑏𝑏1

ℎ𝑏𝑏

𝑎𝑎2
𝒖𝒖𝟎𝟎

𝒗𝒗𝟎𝟎

𝒖𝒖𝟏𝟏

𝒗𝒗𝟏𝟏

𝒖𝒖𝟐𝟐

𝒗𝒗𝟐𝟐

𝒖𝒖𝟑𝟑

𝒗𝒗𝟑𝟑

𝒖𝒖𝟓𝟓

𝒗𝒗𝟓𝟓

𝒖𝒖𝟔𝟔

𝒗𝒗𝟔𝟔

𝒖𝒖𝟕𝟕

𝒗𝒗𝟕𝟕

𝒖𝒖𝟒𝟒

𝒗𝒗𝟒𝟒
1 0 1 0 1𝑏𝑏2

1 0 1

Othello 1 Othello 2

𝐴𝐴

𝐵𝐵

ℎ𝑎𝑎

𝜏𝜏 𝑘𝑘 = 01 ⊕ 10 = 11 2
k is in set Z3

CPUs can read l bits at one time

𝐴𝐴[0]𝐴𝐴[1]

Alien keys
What is 𝜏𝜏 𝑘𝑘 = 𝑎𝑎 ℎ𝑎𝑎 𝑘𝑘 ⊕ 𝑏𝑏[ℎ𝑏𝑏 𝑘𝑘] when 𝑘𝑘 is
not in 𝑆𝑆?
 An arbitrary value

𝜏𝜏 𝑘𝑘 return 1 with when
 𝑎𝑎 𝑖𝑖 = 1 && 𝑏𝑏 𝑗𝑗 = 0, or
 𝑎𝑎 𝑖𝑖 = 0&& 𝑏𝑏 𝑗𝑗 = 1

53

Applications of Othello
1. Forwarding Information Base (FIB)
2. Software load balancer
3. Data placement and lookup
4. Private queries
5. Genomic sequencing search
And more…

54

A Concise FIB
Resolving FIB explosion is crucial
 For layer-two interconnected data centers
 For OpenFlow-like fine-grained flow control

Concise using l-Othello is a portable
solution
 In hardware devices
 Or software switches

55

A Fast, Small, and Dynamic Forwarding Information Base, In ACM SIGMETRICS 2017
A Concise Forwarding Information Base for Scalable and Fast Name Switching, in

IEEE ICNP 2017.

Network-wide updating
If all devices share a same set of network
names/addresses
 Such as in layer-two Ethernet-based data

centers
 All Othellos will share a same G.
 Hence network-wide updating is very efficient!

Update consistency also provided

56

Implementation of three prototypes
1. Memory mode
 Query and control structures running on

different threads.

2. CLICK modular router
3. Intel Data Plane Development Kit (DPDK)

57

Comparison:
Buffalo

Cuckoo hashing

58

Yu, Fabrikant, Rexford, in CoNEXT’09

Zhou, Fan, Lim, Kaminsky, Andersen,
in CoNEXT’13 and SIGCOMM’15

Comparison: Memory size

59

FIB Example Memory Size
Name Type # Names # Actions Concise Cuckoo Buffalo

MAC (48 bits) 7*105 16 1M 5.62M 2.64M
MAC (48 bits) 5*106 256 16M 40.15M 27.70M
MAC (48 bits) 3*107 256 128M 321.23M 166.23M
IPv4 (32 bits) 1*106 16 2M 4.27M 3.77M

IPv6 (128 bits) 2*106 256 8M 34.13M 11.08M
OpenFlow (356 bits) 3*105 256 1M 14.46M 1.67M
OpenFlow (356 bits) 1.4*106 65536 8M 67.46M 18.21M
File name (varied) 359194 16 512K 19.32M 1.35M

Query speed

60

2x to 4x speed advantage

Update speed

61

For unknown network names
1. For data centers with most internal traffic
 Such situation is rare

2. For networks with much incoming traffic
 A filter can be installed at a firewall

3. Concise may include an r-bit checksum.
 A lookup still requires 2 memory accesses in

total, as long as l + r <= 64.

62

Thank You

Chen Qian
cqian12@ucsc.edu

https://users.soe.ucsc.edu/~qian/

mailto:cqian12@ucsc.edu
https://users.soe.ucsc.edu/%7Eqian/

	Cuckoo Filter: �Practically Better Than Bloom
	What is Bloom Filter? A Compact Data Structure �Storing Set-membership
	Example Use: Safe Browsing
	Bloom Filter Basics
	Slide Number 5
	Outline
	Basic Idea: Store Fingerprints in Hash Table
	Basic Idea: Store Fingerprints in Hash Table
	Basic Idea: Store Fingerprints in Hash Table
	Basic Idea: Store Fingerprints in Hash Table
	(Minimal) Perfect Hashing: �No Collision but Update is Expensive
	(Minimum) Perfect Hashing: �No Collision but Update is Expensive
	 Convention Hash Table: High Space Cost
	Cuckoo Hashing[Pagh2004] Good But ..
	Standard Cuckoo Requires Storing Each Item
	Standard Cuckoo Requires Storing Each Item
	Standard Cuckoo Requires Storing Each Item
	Standard Cuckoo Requires Storing Each Item
	Challenge: How to Perform Cuckoo?
	 We Apply Partial-Key Cuckoo
	Partial Key Cuckoo Hashing
	Fingerprints Must Be “Long” for Space Efficiency
	Space Efficiency
	Space Efficiency
	Space Efficiency
	Space Efficiency
	Outline
	Evaluation
	Lookup Performance (MOPS)
	Lookup Performance (MOPS)
	Lookup Performance (MOPS)
	Lookup Performance (MOPS)
	Insert Performance (MOPS)
	Summary
	Othello Hashing and Its Applications for Network Processing
	Background
	Motivation
	Othello Hashing
	Why Othello is special
	Idea of dynamic Othello lookups
	How Othello works
	Othello Query Structure
	Othello Control Structure: Construct
	Othello Construct
	Compute Bitmap
	Compute Bitmap
	Name Addition – color flip
	L-Othello functionality
	Example
	Slide Number 51
	Slide Number 52
	Alien keys
	Applications of Othello
	A Concise FIB
	Network-wide updating
	Implementation of three prototypes
	Comparison:
	Comparison: Memory size
	Query speed
	Update speed
	For unknown network names
	Thank You

