CE252A Project A: Implementation of DHT

In this project, you are going to working on one of the most cited implementation of
DHT: Chord (http://nms.lcs.mit.edu/papers/chord.pdf). This topic was covered in the
lecture (https://cmpe252a-fall17-
01.courses.soe.ucsc.edu/system/files/attachments/Lecture02_0.ppt).

The main task of this project is to implement different functions of a node class. The
skeleton of the program will be provided for reference (it is written in c++. We are sorry
for other language users). Your job is to implement some interfaces of a class. Your
program will be tested against a set of member function calls.

For ease of grading, the keys and node identifiers are 8-bit. Hash functions (e.g. SHA-1
in Chord paper) are omitted in the project for the same reason.

When a node join the DHT network, the node needs to build its own finger table for
routing purposes. To bootstrap this process, the node is provided with another node that
is already in the Chord network by some external mechanism. The following member
function should be implemented. When a node joins, some keys should be migrated to it
as well.

void Node::join(Node* node);

Chord paper presents some optimization techniques to initialize the finger table, it is
optional to implement one of them. We will not consider multiple simultaneous joins in
this project.

When a node leave the DHT network, the keys maintained in the node should be
migrated to another node. Since Chord paper does not describe the procedure to
handle node leave in detail, it is optional to to complete the following function:

void Node: :leave();

This function should be able to locate the node the keys should be migrated to as well
as to notify other nodes to modify the finger table.

In Chord, each node maintains part of the distributed hash table. On condition that the

guerying key is not maintained locally, the node needs to query the key from the Chord
network. Likewise, the node is also able to insert/remove keys in corresponding node.

Therefore, the following three functions are crucial too.


http://nms.lcs.mit.edu/papers/chord.pdf
https://cmpe252a-fall17-01.courses.soe.ucsc.edu/system/files/attachments/Lecture02_0.ppt
https://cmpe252a-fall17-01.courses.soe.ucsc.edu/system/files/attachments/Lecture02_0.ppt

uint8_t Node::find(uint8_t key);
void Node: :insert(uint8_t key, uint8_ t value);
void Node::remove(uint8_t key);

Upon join() and leave(), the most updated finger tables should be printed to the screen.
For find(), the sequence of nodes that the node talks to should be printed to the screen
too.

All the member functions will be tested in a set of main functions. E.g.

int main() {
Node n@(5); // node_id == 5
Node n1(63); // node_id == 63
n@.join(null); // the first node to join the Chord network.
n@.insert(3, 3); // insert key = 3
nl.join(&n®); // the second node join the Chord network.
nl.insert(5); // insert key = 5
n@.find(5); // key query

TIPS:

Chord leverages Remote Procedure Call (RPC) to either iteratively or recursively to
lookup a key located at other nodes. It is easy to mimic RPC in simulation settings
For example,

int remoteLookup(uint8 t key, Node* remoteNode) {
return remoteNode->locallLookup(uint8_t key);

}
It can even be called recursively. For example,

int remoteLookup(uint8_ t key, Node* remoteNode) {
return remoteNode->remoteLookup(key, anotheRemoterNode);

}

Grading rubrics

1. Build the finger table correctly and print the finger table in the screen when a new
node joins. (40 pts)

2. Correct keys are moved when a new node joins the DHT network. Print the keys
that are migrated (20 pts)

3. Correctly lookup keys. Print the sequences of nodes get involved in this
procedure. (40 pts)

4. [optional] Implement Node::leave() correctly. (20 pts)



5. [optional] Correctly Simulate Space Shuffle
https://users.soe.ucsc.edu/~gian/papers/TPDS16.pdf (40 pts)

If you have any questions or find any bugs, please contact TA Xin Li (xli178@ucsc.edu).


https://users.soe.ucsc.edu/%7Eqian/papers/TPDS16.pdf

